
Chip Jackson <charles.w.jackson@nasa.gov> 
NASA Langley 

Overset Grid Symposium 2022

OVERFLOW on GPUs
Progress and Lessons Learned

mailto:charles.w.jackson@nasa.gov


Overview

• Goals of OVERFLOW GPU Port


• Miniapps - Lessons Learned


• Current Status


• What is Coming


This is a work in progress

2



Goals of OVERFLOW GPU Port

• Learn about GPU programming


• Determine if running on the GPU makes sense for OVERFLOW


• Have one path through the code fully ported to GPUs


• Long term: have feature parity between the CPU and GPU path in a 
sustainable way

3



Benefits of GPUs over CPUs

• Higher memory bandwidth (900-1500 GB/s vs. 50-150 GB/s)


• Great for memory bound codes like OVERFLOW


• Expose much more parallelism for more performance (10-300 TFLOPS vs. 
7-250 GFLOPS)


• More power efficient (FLOPS/W) than CPUs


• More space-efficient than CPU only hardware (can fit more compute in a 
single rack)

4



Downsides of GPUs

• Less flexibility than CPUs


• You have to have enough parallelism to fill the GPU, O(100,000)


• Data transfer between the CPU and GPU can be relatively slow


• Getting peak performance out of GPU can be difficult for complex problems


• You have to write your code specifically for the GPUs

5



How to write code for GPUs?

• Many different options

• Vendor Specific: CUDA, HIP 

• Directive Based: OpenACC, OpenMP

• Frameworks: Kokkos, RAJA, OCCA, OneAPI


• We selected OpenACC for it’s ease of implementation and native Fortran 
support but are aware of downsides to this approach

• Do have some CUDA Fortran 

• Other groups have switched to C++ where you have a wider range of 

options for porting

6



Miniapps



Miniapps

• These have been critical to our success on both the CPU and GPU


• Simple, small codes that can be iterated quickly (build and run)


• Exhibit common motifs from application with a “correct” answer


• We were able to release these miniapps as open-source for easier 
collaboration with external partners


• We have created two miniapps

8



Central Solver Miniapp
Overview

• Form the 2nd-order Euler residual with the central scheme (F3D smoothing)


• Form the batch scalar-pentadiagonal LHS


• Solve the batch scalar-pentadiagonal scheme 

Motifs


• Stencil operations common throughout OVERFLOW


• Scalar-pentadiagonal build and solve

9



Central Solver Miniapp
Lessons Learned

• Several changes were required to get good performance out of the miniapp


• Expose more parallelism


• Do more work in a kernel


• Hide launch latency with ASYNC(stream) clauses


• Unfortunately this means code is not single-source


• Changes should help CPU but break auto-vectorization 

10



Central Solver Miniapp
Example

!$acc parallel loop gang collapse(2) async    &

!$acc    present(batch,grids,solns,sources)   &

!$acc    private(ig)

do iig = 1, batch%ngrids

  do l   = 1, batch%lmax

    ig = batch%ig_map(iig)

    if( l <= grid(ig)%ld ) then


!$acc loop vector collapse(2)

      do k = 1, grid(ig)%kd

      do j = 1, grid(ig)%jd

        ! do something

      end do

      end do


    end if

  end do

end do

11



Chimera Boundary Exchange Miniapp
Overview

• Interpolate solution


• Pack up interpolated solution


• Transfer buffers


• Unpack buffers


• Not a significant portion of runtime on CPUs, but rather a technical barrier to 
getting OVERFLOW running on GPUs

12



Chimera Boundary Exchange Miniapp
Lessons Learned

• We are using 1 MPI rank per GPU


• Easily and efficiently move data between GPUs with OpenACC and CUDA-
aware MPI

!$acc host_data use_device(buff) if_present

      call MPI_Send( buff, count, my_mpi_real, dest, tag, comm, ierr )

!$acc end host_data

13



Latest Status of the OVERFLOW Miniapps

Single V100S GPU, Dual Socket Intel Gold 6148 Skylake CPU node V100 GPU at NAS (1 rank / GPU) vs. 
 Dual Socket Intel Gold 6148 Skylake CPU at LaRC (1 rank / Core)

3.1x 1.15x

8x

14



Porting the Full Application



Current Status

• Pulled the work from the miniapps into the full application


• Read problem inputs on the CPU then branch off for the GPU path


1. Ensure the requested options have been ported


2. Transfer the necessary data to the GPU


3. Run the solver on the GPU


4. Transfer data back to the CPU for output and post-processing

16



Ported Options

• Only have a small subset of the capabilities ported to the GPUs so far (based 
on the miniapps)


• Central scheme, scalar-pentadiagonal solver, SA-neg-noft2 turbulence 
model, certain boundary conditions, no grid sequencing/multi-grid, static 
grid systems


• We do extensive option checking to ensure that the requested path is 
supported


• Still a work in progress to add more features and improve the performance

17



Future Plans

• Add upwinding schemes (Roe, HLLE++)


• Add moving grid capability


• Add SSOR path


• Other features that users want first?

18



Questions? Comments?

Chip Jackson

charles.w.jackson@nasa.gov


