Adaptive Mesh Refinement for Overset

15th Symposium on Overset Composite Grids and Solution Technology

Björn Gmeiner, Markus Huber, Eberhard Schreck

Unrestricted | © Siemens 2022 | Björn Gmeiner | Server - Integrated Meshing | 2022-11-02

Content

- Basic Concepts & Background Refinement
- Initialize Solution
- Gap Refinement
- Overset Region Refinement

Motivation

Basic Overset requirement:

- Ensure similar cell sizes at the Overset interfaces
- Provide sufficient mesh resolution in Gaps

Overset refinement components in STAR-CCM+:

- Refine the background regions according to the overset regions
- Refine the overset regions according to the background regions
- Ensure minimal resolution in gaps (> 5 cells in the gap width)
- Coarsen inactive cells

SIFN

Motivation

Overset Mesh Refinement Criteria

Refine or coarsen regions of lower priority (e.g. Background region) in order to match the cell sizes of all higher priority regions at the Overset interfaces.

Loose and Tight Overset Boundaries

Loose Overset Boundary **without** AMR

Tight Overset Boundary with Overset AMR

Variable Background Mesh Size with Overset AMR

Unrestricted | © Siemens 2022 | Björn Gmeiner | Server - Integrated Meshing | 2022-11-02

Loose and Tight Overset Boundaries

Loose Overset Boundary without AMR

Tight Overset Boundary with Overset AMR

Variable Background Mesh Size with Overset AMR

Timestep (+)**Result Accuracy** (+) Cell Size Mismatch Ease of Use **Runtime**

Cell Size Match (+)**Result Accuracy** (+)

General **Recommendation:**

Unrestricted | © Siemens 2022 | Björn Gmeiner | Server - Integrated Meshing | 2022-11-02

When to use AMR due to Overset

Some suggestions for the decision process:

- Ignore refinement due to physics.
- Only consider initial mesh and mesh motion.

When are cell sizes matching at the Overset interface?	New Overset user or user with focus on setup time	Experienced user with focus on performance
Never	Use Overset refinement criteria	If possible, coarsen regions with higher priorities at the interface. Otherwise see action below.
Initial Mesh Only	Use Overset refinement criteria	Use Overset refinement criteria or adjust refinement in motion path
During Full Mesh Motion	No actions required	No actions required

Overset Mesh Refinement: Graphical User Interface

Interface Refinement Width

Initial Regions

Intersected Regions without AMR

Interface Refinement Width

Interface Refinement Width: Additional width Relative parameter, Multiples of acceptor size diameters

Refinement width:

2 (default)

4

0

Handling Overset errors (initialize Solution)

If an Overset error occurs within the **initial intersection**: Ignore the error and try to resolve it by using the *Overset Mesh Refinement Criterion* (if added)

Handling Overset errors (initialize Solution)

If an Overset error occurs within the initial intersection:

Ignore the error and try to resolve it by using the Overset Mesh Refinement Criterion (if added)

General Gap Refinement

Simcenter STAR-CCM+

Simcenter STAR-CCM+

Overset Small Gap Modeling

Overset Prism Layer Shrinkage

- Moving previously inactive prism layer cells into the gap ("specialized morphing")
- Anisotropic refinement
- Cheap (no additional cells)

Adaptive Mesh Refinement

- Refining cells inside the gap
- Isotropic refinement
- No prism layers required

Prism layer refinement & prism layer shrinkage

Prism layer refinement & prism layer shrinkage

Oil jet lubrication for high speed gears Gap Refinement Strategy

Unrestricted | © Siemens 2022 | Björn Gmeiner | Server - Integrated Meshing | 2022-11-02

Overset Small Gap Modeling

Combination of AMR and Overset Prism Layer Shrinkage

Step 1: AMR

Step 2: Prism Layer Shrinkage

Shrinkage may not be not possible, since prism layers are no longer fully intact!

Possible remediation

- Leave default Continua > Adaptive Mesh > Prism Cell Refinement: None
- Use Uniform Gap Refinement

Overset Uniform Gap Refinement

 Properties 			
Max Refinement Level	2		
Enabled	2		
Tags	[]	+	
 Expert 			
Interface Refinement Width	2.0		
Uniform Gap Refinement	Specified Level		
Gap Zone Width	None	None	
Gap Refinement Level	Specified Level		
	Adaptive Level		

Parameters

- **Gap Zone Width**: Specifies a gap distance in order to identify a cell to be located within a gap.
- Gap Refinement Level (only available for Specified Level): Target refinement level within all gaps.

Simulating Oil Jet Lubrication of High Speed Gears AMR vs static mesh

	AMR setup	Static mesh setup
Mesh count	~9M after ½ revolution	~90M
Number of cores	216	216
Elapsed time per time step	~28s after $\frac{1}{2}$ revolution (on average)	~177s
Elapsed time for 1/2 revolution	50h	300h (estimated)

Solution time: 1.5000 (ms

y z x

Solution time: 0.0000 (ms)

Example: Oil jet lubrication for high speed gears Gap Refinement Strategy (by Klaus Wechsler)

Overset Region Refinement

The initial meshes (left) as well as the refined meshes (right) do have matching cell sizes. Hence, **only having consistent cell sizes** between overset and background region **is not sufficient** to provide an unique refinement.

An additional constraint is necessary to avoid repeated refinement or refinement oscillations in time!

Example: Refinements in the Overset Region

Conclusion

How Adaptive Mesh Refinement can help to

- Keep Overset interfaces refined
- Simplify Overset setup

