

RECENT DEVELOPMENTS IN AUTOMATION OF OVERSET STRUCTURED MESH GENERATION

William M. Chan, Andrew M. Chuen, Shishir A. Pandya

Computational Aerosciences Branch

NASA Ames Research Center

15th Symposium on Overset Composite Grids and Solution Technology, Suffolk, Virginia, November 1-3, 2022

OUTLINE

- Motivation, objectives, challenges
- Automation procedure
- Test cases
- Concluding remarks

MOTIVATION AND OBJECTIVES

- Structured overset viscous flow solvers highly accurate and efficient compared to other methods
- High-fidelity overset mesh generation significant user expertise, effort, time (weeks/months, surface grids ~80% time)
- Develop tools to reduce human effort needed
- Goal: 100% automation
- Hybrid: 90+ % automation + manual repairs => significant savings

CHALLENGES

- 1. Surface domain decomposition *
- 2. Grid point distribution *
- 3. Surface meshing scheme *
 - Method selection (hyperbolic/algebraic)
 - Distance estimate
- 4. Mesh overlap
 - Side *
 - Outer & hole boundaries **
- 5. Hyperbolic mesh smoothing iterations in concave regions **
- * Chan, W. M., Pandya, S. A., Chuen, A. M., Automation of Overset Structured Mesh Generation on Boundary Representation Geometries, AIAA Paper 2022-3607, Aviation Forum, 2022.
- * Chan, W. M., Pandya, S. A., Haimes, R., Automation of Overset Structured Surface Mesh Generation on Complex Geometries, AIAA Paper 2019-3671, 2019.

** To be addressed in future work

OVERSET MESH GENERATION AUTOMATION FLOW CHART

SURFACE DOMAIN DECOMPOSITION

- Use cut-cells to generate iblank array (1/0 = on/outside geometry)
- Minimum hole-cut on face meshes

Discretized edges

ç

NODE MESHES

- Construct initial curve to straddle Node by concatenating "best" two Edge segments
- Hyperbolic or algebraic marching: 2, 3, or 4 parts
- Algebraic march switched to TFI if iso-parameter lines of face mesh not aligned with sharp dividing Edge at Node

AUTOMATIC CONVERSION TO CAP GRID TOPOLOGY

Node meshes with acute concave corner Wing/tail tip trailing edge region

Chuen, A. M., Chan, W. M., Overlap Preservation Using Loosely-Coupled Boundary Conditions for Body-Fitted Structured Overset Grids, AIAA Paper 2022-0216, 2022.

OVERSET VOLUME MESH GENERATION PROCEDURE

OVERSET VOLUME MESH DOMAIN CONNECTIVITY (work in progress)

- Inherit surface holes from surface grids
- Near-body grids minimum hole
 - Grid index directions: J, K tangential, L normal
 - Check L line segments intersection with surface grid and blank all points in L after intersection
 - Check for minimum distance clearance from surface grid cells
- Off-body grid minimum hole X-ray method using z-constant lines on Cartesian mesh
- Minimum hole expansion
- Donor stencils identification (partially completed from volume mesh LCBC)

OVERSET MESH GENERATION AUTOMATION SOFTWARE

AUTOMATION SOFTWARE FLOW CHART

E.g., mesh one or more slat brackets + connected faces

- User-specified list of faces to remove
- Auto-update of face/edge/node topology

Single

Component

Meshing

TEST CASES

All cases ran on 2018 Mac BookPro laptop, 2.9 GHz Intel Core i9, 16GB memory

- Surface meshes mostly single processor
- Volume meshes 6 OpenMP threads

Mesh quality (% acceptable)

- % surface meshes with no negative cell areas
- % volume meshes with no negative Jacobians or self-intersections

Ames Research Center	Ø	ROTORCRAFT CONCEPT VEHICLES Manual meshing time ~ weeks per vehicle					
6-Pax Quadrot	Mai	et Single n Rotor		Lift+Cruise	e (no pylons, no ge		
Concept Vehicle	# Meshes	# Volume mesh pts	% Acco Surface	eptable Volume	Wall clock time surface+volume		
6-Pax Quadrotor	227	21.7 M	<mark>100</mark>	94	5 min 15 sec		
Quiet Single Main Rotor	179	15.2 M	99	97	3 min 1 sec		
Side-By-Side	162	14.8 M	<mark>100</mark>	<mark>100</mark>	4 min 3 sec		
Lift+Cruise (no- pylons, no-gears)	87	35.6 M	<mark>100</mark>	98	7 min 1 sec		
Lift+Cruise (with pylons & gears)	365	43.7 M	99	98	4 min 9 sec		
Tiltwing Cruise	307	38.6 M	<mark>100</mark>	98	4 min 47 sec		

Case	#	# Volume	% Acceptable		Wall clock time
	Meshes	mesh pts	Surface	Volume	surface+volume
Rotor Hub	142	4.9 M	99	99	0 min 35 sec
Multi-Rotor Testbed	258	35.6 M	100	100	1 min 35 sec

SIDE-BY-SIDE ROTORS WIND TUNNEL HARDWARE

Complex

Imes Research Center

Simplified

Case	#	# Volume	% Acce	ptable	Wall clock time
	Meshes	mesh pts	Surface	Volume	surface+volume
Complex	883	41 M	99.8	96	4 min 14 sec
Simplified	251	11 M	100	99	1 min 27 sec

HLCRM AUTO SURFACE MESH STATISTICS Single Component Runs

* Face meshes only, Edge + Node meshes in progress

Manual meshing time ~ 4 months

HLCRM: PYLON/NACELLE/CHINE

HLCRM: OUTBOARD SLAT BRACKETS

- Automation scheme on BRep solids
 - Surface domain decomposition into face, edge, node meshes
 - Near and off-body volume mesh generation
 - Domain connectivity (surface: automatic, volume: manual)
 - Input files: flow solver, component loads computation
- Low to medium complexity cases (Juncture Flow, RVLT concept vehicles, wind tunnel hardware)
 - 99 100% acceptable surface meshes
 - 94 100% acceptable volume meshes
- Preliminary flow solutions on Juncture Flow F6 and Lift+Cruise concept vehicle cases show comparable convergence behavior and converged aerodynamic loads as manual meshes
- Significant reduction in effort and time: hybrid auto & manual meshes
 - Weeks/months -> days
 - Days -> hours

ACKNOWLEDGEMENTS

Funding

NASA ARMD Projects Transformational Tools and Technologies (TTT) Revolutionary Vertical Lift Technology (RVLT) Advanced Air Transport Technology (AATT)

Computational Resources

NASA Advanced Supercomputing (NAS) facility