

Suggar++: Current Status and Improvements

Ralph Noack, Ph.D. President

Celeritas Simulation Technology, LLC www.CeleritasSimTech.com

- Brief Overview of Suggar++ Capabilities
- New Features
 - Interpolation Using Unstructured Dual Grid
 - Immersed Boundary Capability
 - Reorder To Improve Performance
- Summary

Overview of Suggar++ Capabilities

- A general overset grid assembly code
- Useable with most any solver/grid system
- Available world wide
 EAR-99 export license

Suggar++® is a registered trademark of Celeritas Simulation Technology, LLC

Suggar++ Grid Types

- Structured
 - Curvilinear
 - Analytic
 - Cartesian (uniform and non-uniform)
 - Uniform can be defined in input file
 - Cylindrical
 - Spherical
 - Faster, less storage

- Unstructured
 - Tetrahedron
 - Mixed element
 - Tet, Hex, Prism, Pyramid
 - Hanging Nodes (NEW)
 - General polyhedral
 - Octree-based Cartesian

- Node- and/or cell-centered assembly
 - Has been used to couple different solvers
 - Overflow (node-centered) & Octree (cell-centered)
- Support for arbitrary structured solver stencil
 - Mark fringes required by flow solver spatial discretization
- High-order discretization support
 - Arbitrary number of fringes
 - High-order interpolation for structured grids

- Hole cutting
 - Direct cut, analytic, octree, hybrid, manual
- Overlap minimization using general Donor Suitability Function
 - DSF: is this donor suitable for the fringe?
 - Element volume, diagonal, min edge length
 - Element size (bounding box diagonal)
 - Distance-to-wall
 - Switch to d-to-wall near surfaces

Suggar++ Support for Overlapping Surfaces

- Integrated surface assembly
 - "Project" fringe grid onto donor grid
 - Structured and/or mixed element grids
 - Unstructured grid must have layers
 - Overlapping surfaces with relative motion
- Integrated USURP to support Force & Moment integration
 - Integration weights available via file, API to transfer without file I/O

- Threads for shared memory machines
 - Thread loops over grids
 - Thread loops over elements/nodes
- MPI for distributed memory machines
- Hybrid parallel execution
 - Use MPI to distribute memory across nodes
 - Use threads within a node

- Suggar++ is designed for moving body simulations
- Link into flow solver for integrated dynamic OGA
- libSuggar++ API
 - Control execution
 - Provide moving body transformations
 - Transfer DCI
 - With or without DiRTlib
 - Improved capability to send DCI to flow ranks

Unstructured Dual Grid Donor

- Flow solver data is collocated with grid points
- Use parametric/trilinear interpolation from data at cell corners
 - Donor weights are between [0-1] if fringe is inside the donor cell

Cell Centered Donor Interpolation

- Flow solver data is collocated with cell centers
- Standard donor members
 - Donor cell and its neighbors
 - Use Least Square approach to compute interpolation weights
 - Donor weights are NOT between [0-1]: Interpolation is nonmonotonic
 - DiRTlib has option to clip interpolated data
 - Cannot build clipping into pressure matrix
- New: Unstructured dual grid donor

- Details in AIAA-2020-1407

- Primal grid
 - Grid points and cells connecting grid points
- Dual Grid
 - Primal cell centers (PCC) and cells connecting PCC
 - Implicit for structured grids
 - Must be generated for unstructured grid
 - Global Dual Grid
 - Single grid connecting all primal cell centers
 - Local Dual Grid covering each primal cell
 - Independent of neighboring primal cells
 - Requirement: completely cover primal cell

Structured

Dual Grid

Unstructured

Generation of Tetrahedral Dual Grid

- Delaunay tetrahedralization of primal grid cell centers
 - Uses Pointwise meshing software
 - Option to add boundary points & face centers
 - Anisotropic primal meshes can lead to performance issues
 - Can produce sliver cells with planar data

- Global Dual can be expensive
 - Serial process to generate
 - Large grid to generate and store
- Local Dual Grid at each primal cell
 - Requirement: completely cover primal cell
 - Independent of neighboring primal cells
 - Task parallel generation
 - Only need to load dual cells that are needed
 - Overhead/time required to loading local dual

- Covers primal cell
- Generates unneeded dual cells
 - Remove points/cells that are outside of primal cell

HIFIRE-1

Mach = 7.16 $\alpha = 0^{\circ}$ $T_{wall} = 300 K$

Slide courtesy of Cameron Brown, Corvid Technologies

- <u>HF2:</u> Least squares weighting *with* interpolation function clipping
- HF3: Dual-grid donor weighting
 without interpolation function
 clipping

Exp. Data: Wadhams et al., J. Spacecraft and Rockets, Vol. 45, No. 6, 2008.

Hanging Node Mixed Element Grid

Hanging Node Mixed Element Grid

- Mixed Element Grid has specific cell types
 - Hex, Prism, Pyramid
 - Refinement requires transition elements
 - Connect refined to unrefined elements
 - LARGE number of possible refinement templates
 - AIAA 2011-3054
- Allowing hanging nodes
 - Eliminates need for transition elements
 - Simpler derefinement
- Suitable for solver using face-based connectivity

Example Hanging Node Grid

Hanging Node

With Transition Elements

Immersed Boundary Capability

- Bodies in close proximity can may not have sufficient overlap for orphan free assembly
- Suggar++ supports two different approaches for supporting solver immersed boundary approach
 - Cutting geometry marks cells
 - OUT_immersed, ACTIVE_immersed
 - Solver treats grid interior cell face as solid boundary
 - AIAA Paper 2009-3992
 - Auxiliary grid marks points/cells
 - Locations inside grid are marked as immersed
 - Immersed locations can be used as donor members

Ocean Engineering 257 (2022) 111607

Magenta points below plane are marked as immersed

Video courtesy of Cameron Brown, Corvid Technologies

Reorder To Improve Performance

- Reordering to reduce matrix bandwidth is common for flow solvers
- Reordering to improve cache locality can improve performance for overset assembly
- Suggar++ has a utility to reorder the grid
 Reorder grid points and cells

- Reverse Cuthill-McKee (RCM) algorithm

- Commonly used to reduce solver matrix bandwidth
- Using routines from Boost Library
- Expensive in time and memory
- Converts X,Y,Z into a single code word value
 - Space Filling Curve
 - Hilbert (HIL), Morton (MCW)
 - Fast and low storage

Number of grid points	27,672,611
Number of elements	162,626,774

	HILBERT	MORTON	RCM
Wall Clock Time (Seconds)	33.2	74.7	1015.3
Memory Used (GB)	16	16	43

Performance Improvement with reordering

- Provided a brief overview of Suggar++
- Presented highlights of new features
 - Interpolation Using Unstructured Dual Grid
 - Immersed Boundary Capability
 - Reorder To Improve Performance

 Thanks to Pointwise, Inc. for the use of tetrahedral meshing software used in the dual grid effort.

Commercial distribution and support for Suggar++ provided by

Celeritas Simulation Technology, LLC

http://www.CeleritasSimTech.com

Exportable under an EAR-99 license